which separated was extracted thoroughly with ether, and the combined ether extracts were washed successively with several portions of dilute sodium hydroxide and water. The base was thoroughly extracted from the ether with λ' acetic acid solution and the extract was filtered and made strongly alkaline with sodium hydroxide. The base was again extracted with ether, the combined ether extracts were dried over anhydrous potassium carbonate, and the ether was removed. Crystallization of the residues from the solvents indicated gave the desired bases as bright yellow solids.

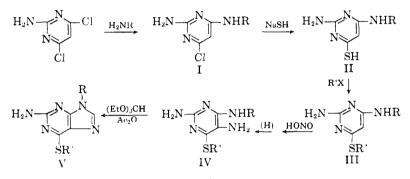
7,7'-Ethylenebis(iminoethyleneimino)bis[3-chlorodibenzo[b,h][1,6]naphthyridine (XVI), —A mixture of 2.92 g. (0.02 mole) of triethylenetetramine (Eastman Kodak Co.) and 40 g, of phenol was heated in *vacuo* on the steam-bath for 3hr. to remove traces of moisture; 11.96 g. (0.04 mole) of 3,7-dichlorobenzo-[b,h] [1,6] naphthyridine (XIV) subsequently was added, and the mixture was stirred and heated at $110-125^{\circ}$ for 4 hr. The warm reaction mixture was diluted with ethanol and stirred into a solution of 25 nil, of concentrated hydrochloric acid in 250 nil, of acctone. The mixture was further diluted with 500 ml, of acctone, and allowed to stand for 18 hr. The crude yellow hydrochloride salt was collected by filtration, dried, suspended in ethanol, and made strongly alkaline with concentrated animonium hydroxide. The mixture was shaken with chloroform, filtered, and the aqueous layer discarded. The residue and chloroform layer were combined and evaporated to dryness. The residue was triturated with several portions of boiling ethanol and filtered. The bright vellow residue weighed 6.0 g. (45%), m.p. $248-252^{\circ}$. Recrystallization from a mixture of dimethylformanide, 2-propanol and petroleum ether (b.p. 80-110°) (decolorizing charcoal) raised the melting point to 256--257°.

Anal. Caled. for $C_{38}H_{32}Cl_2N_8$; C, 67.95; H, 4.80; N, 16.69. Found; C, 68.14; H, 4.59; N, 16.92.

Potential Purine Antagonists. XXXI. The Preparation of Certain 9-Alkyl-2-amino-6-purinethiols and Related Derivatives as Antitumor Agents¹

C. WAYNE NOELL AND ROLAND K. ROBINS

Department of Chemistry, Arizona State University, Tempe, Arizona


Received November 13, 1961

A new, convenient preparation has been achieved for certain 9-alkyl-2-amino-6-purinethiols and their 6-alkylthio derivatives. A number of these compounds exhibit complete tumor inhibition of Adenocarcinoma 755 *in vivo* at varied dosage levels. These data are presented and discussed.

Studies of the antitumor activity of 2-amino-9-methyl-6-purine-

thiol² by LePage and Jones³ have stimulated the synthesis of additional derivatives of 2-amino-6-purinethiol possessing an alkyl substituent at position 9. The inhibition of Adenocarcinoma 755 by various 6-alkylthio-2-aminopurines⁴ suggested extension of previous work to include the preparation of a number of 9-alkyl-6-alkylthio-2-aminopurines (V).

Previous synthetic routes^{2,5} to 9-substituted 2-amino-6-purinethiols were found to be rather involved and cumbersome for the large quantities of material required for the present study. Thus, a direct route to the preparation of 9-alkyl-6-alkylthio-2-aminopurines (V) was devised.

The preparation of 2-amino-6-chloro-4-substituted aminopyrimidines (I) was readily accomplished when 2-amino-4,6-dichloropyrimidine⁶ was refluxed with the proper primary amine in ethanol. The 4alkylamino-2-amino-6-chloropyrimidines prepared are listed in Table VI. 2-Amino-6-chloro-4-ethylaminopyrimidine has previously been reported⁷ from 2-amino-4,6-dichloropyrimidine and aqueous ethylamine at 100°.

To obtain the appropriate 2-amino-4-substituted amino-6-pyrimidinethiol (II) from I, sodium hydrosulfide in ethylene glycol was employed. The use of this reagent for the replacement of an unreactive chlorine atom by mercapto has been reported^{4,8} recently for

⁽¹⁾ This investigation was supported by Contract No. SA-43-ph-1928 with the Cancer Chemotherapy National Service Center of the National Cancer Institute, National Institutes of Health.

⁽²⁾ H. C. Koppel and R. K. Robins, J. Am. Chem. Soc., 80, 2751 (1958).

⁽³⁾ G. A. LePage and M. Jones, Cancer Research, 21, 642 (1961).

⁽⁴⁾ G. D. Daves, Jr., C. W. Noell, R. K. Robins, H. C. Koppel, and A. G. Beaman, J. Am. Chem. Soc., 82, 2633 (1960).

⁽⁵⁾ H. C. Koppel, D. E. O'Brien, and R. K. Robins, *ibid.*, **81**, 3046 (1959).

⁽⁶⁾ E. Buttner, Ber., 36, 2227 (1903).

⁽⁷⁾ H. S. Forrest, R. Hull, H. J. Rodda, and A. R. Todd, J. Chem. Soc., 3 (1951).

⁽⁸⁾ H. C. Koppel, R. H. Springer, R. K. Robins, and C. C. Cheng, J. Org. Chem., 26, 792 (1961).

Found

49.7

57.4

52.8

60.8

55.14

55.7

Galed.

7.14

7.18

7.68

5.55

8.17

7.2

Found

6.45

7.64

7.3

5.68

8.48

7.39

V1	М р.	 -Hydrogen, %-

Caled.

49.9

57.7

52.7

61.1

55.1

55.8

°Ĉ.

257

280

230

223

258

273

TABLE I

Found

33.1

26.5

30.8

25.8

28.6

28.5

-Nitrogen, %-

Caled.

33.3

26.9

30.8

25.9

28.6

28.8

TABLE	II
-------	----

VII	M.p.,	-Carbo	n, %—	Hydrog	en, %—	-Nitrog	en, %	
R	°C.	Calcd.	Found	Calcd.	Found	Calcd.	Found	Prepn
n-Propyl	277-	45.6	45.34	6.2	6.43	33.3	33.3	Α
$\mathrm{C_8H_{13}N_5O_2}$	279^{a}							
$n ext{-Butyl}$	237-	48.3	48.9	6.26	6.82	31.25	30.8	Α
$\mathrm{C_9H_{14}N_5O_2}$	238^{a}							
Isobutyl	250-	48.3	48.07	6.26	6.58	31.25	30.8	Α
$\mathrm{C}_9\mathrm{H}_{14}\mathrm{N}_5\mathrm{O}_2$	252^{a}							
Benzyl	250^{b}	52.0	52.31	5 , 4	5.36	25.25	25.6	в
$C_{12}H_{13}N_5O_2$	H_2O							
Cyclohexyl	254 -	52.6	52.5	6.78	6.98	27.8	27.6	в
$C_{11}H_{17}N_5O_3$	255^a							
Isoamyl	230^{b}	46.9	46.56	7.03	7.35	27.4	27.6	Α
С	$_{10}H_{16}N_5O_2$	·H ₂ O						
2-Methyl-	243^{b}	50.4	50.63	6.73	7.34	29.4	29.45	Α
n-butyl C ₁₀ H	$I_{16}N_5O_2$							
n-Amyl	233^{a}	46.9	46.99	7.03	7.65	27.4	27.0	Α
$C_{10}H_{16}N_5O_2$	H2O							
Cyclopentyl	256^a	48.8	48.5 9	6.5	6.24	28.45	28.2	в
$C_{10}H_{15}N_5O_2$	$0.5 \mathrm{H}_2\mathrm{O}$							
Methyl	350	39.3	39.63	4.92	4.98	38.25	37.6	Α
$C_6H_9N_5O_2$								

^a These compounds decompose and then melt at the temperature recorded.

R

C7H12N4O Cyclohexyl

C₁₀H_{1€}N₄O *n*-Butyl

 $C_8H_{14}N_4O$ Benzyl

 $C_1 H_{12} N_4 O$ Isoamyl

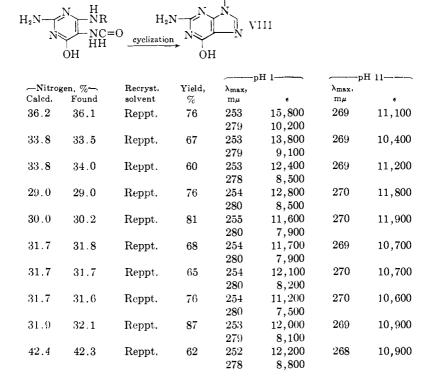
C₉H₁₆N₄O Cyclopentyl

 $C_9H_{14}N_4O$

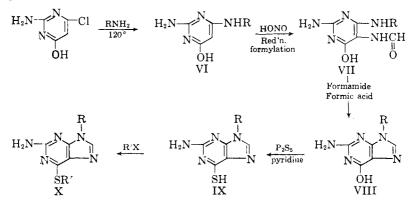
n-Propyl

H₂N	\downarrow	NH ₂ H	2N	N H N-R	VI		
	OH			OH			
Prepn. A	Recryst. solvent Water	Yield, $\%$ 42	——p] λ _{max} , mμ 269	н 1— е 22,700	267	н 11 ¢ 14,900	RNH₂ n-Propylamine
в	2-Ethoxy- ethanol	80	270	24,500	268	17,100	Cyclohexyl- amine
Α	Water	64	269	22,800	267	15,600	<i>n</i> -Butylamine
В	Water	81	269	23,000	268	15,000	Benzylamine
Α	${ m MeOH}_{ m H_2O}+$	80	269	23,200	267	15,500	Isoamylamine
В	Methanol	86	270	24,000	268	16,500	Cyclopentyl- amine
H ₂ N	Nitr Red	NH ₂ H hen osation uction nylation	₂N-Ţ N≈	N H NR NC= HH OH	=0 '	VII	
Equiv.		Overall					
water		% yield		TT .		T1 11	
of hydra-	Recryst.	from 4- Cl-deriv-	λ_{max}	-pH 1	λ_{max}	pH 11	
tion	solvent	ative	mµ	e	mμ	e	RNH₂
0	Water	40	271	22,000	267	14,500	<i>n</i> -Propyl- amine
0	Water	52	272	21,300	268	14,200	n-Butylamine
0	Water	37	272	22,100	268	14,300	Isobutyl- amine
1	Water	62	272	21,900	268	15,500	Benzylamine
0	Water	45	270	27,900	268	19,300	Cyclohexyl- amine
1	Water	56	272	22,300	268	14,600	Isoamylamine
0	Water- ethanol	71	272	21,900	268	14,300	2-Methyl- n-butylamine
1	Water	70	272	22,200	268	14,400	<i>n</i> -Amylamine
1/2	Water	57	273	23,900	268	15,000	Cyclopentyl- amine
0	Water	45	271	20,500	267	13,200	40% methyl- amine in

These compounds melted sharply at the temperature recorded. water

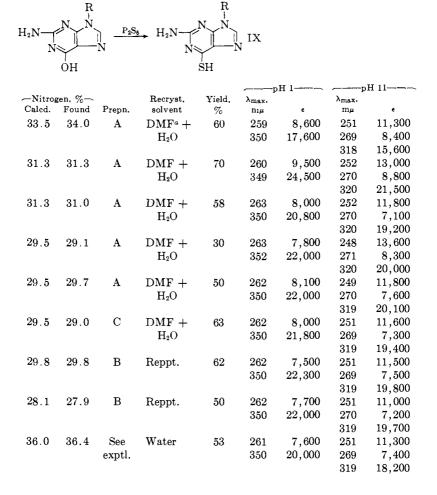

TABLE III

V111	М.р.,	/Carb	on, %		gen, %
R	÷С.	Caled.	Found	Caled.	Found
n-Propyl	373-375	49.7	50.0	5 .7	6.2
$C_8H_{11}N_5O$					
$n ext{-Butyl}$	347 - 349	52.2	52.7	6.28	6.17
$C_9H_{13}N_5()$					
Isobutyl	362 - 365	52.2	52.48	6.28	6.05
$C_{9}H_{13}N_{5}()$					
Benzyl	303 - 304	59.5	59.3	4.56	4.7
$C_{12}H_mN_5()$					
Cyclohexyl	>380	56.7	56.87	6.42	6.49
$C_{11}H_{15}N_5O$					
Isoamyl	357 - 359	54.3	54.1	6. 78	6.75
$C_{10}H_{15}N_5O$					
2-Methylbutyl	368 - 369	54.3	54.3	6.78	7.06
$\mathrm{C}_{10}\mathrm{H}_{15}\mathrm{N}_{5}\mathrm{O}$					
n-Anıyl	303-305	54.3	54.5	6.78	6.70
$\mathrm{C}_{10}\mathrm{H}_{15}\mathrm{N}_{5}\mathrm{O}$					
Cyclopentyl	>380	54.8	55,11	5.94	6.10
$C_{10}H_{13}N_5O$					
Methyl	>380	43.6	43.92	4.24	4 43
$C_6H_{17}N_5O$					


similarly substituted pyrimidines. The 4-alkylamino-2-amino-6pyrimidinethiols (II) prepared by this method are listed in Table VII.

Treatment of the 2-amino-4-substituted amino-6-pyrimidinethiols (II) with various alkyl halides in basic solution or in the presence of N,N-dimethylformamide gave the appropriate 6-alkylthio-2-amino-4substituted aminopyrimidines (III). Seven different compounds of the general type III were prepared for further systematic study and are listed in Table VIII. These compounds were subjected to nitrosation followed by the usual reduction with sodium hydrosulfite in aqueous solution. The nitrosation and reduction steps were successful for the preparation of only two of the desired compounds, 2,5diamino-4-methylamino-6-methylthiopyrimidine and 2,5-diamino-4ethylamino-6-methylthiopyrimidine. These two compounds were readily oxidized in air and were therefore cyclized rapidly with ethyl orthoformate and acetic anhydride to give the two 2-amino-9-methyl-

R


6-methylthio- and 2-amino-9-ethyl-6-methylthiopurines (V) listed in Table Va. Attempts to nitrosate the remaining 4-alkylamino-6-alkylthio-2-aminopyrimidines (III) provided only intractable, tarry products.

IX R	M.p., °C.	-Carbon, Caled.	% Found	Hydroge Calcd.	n, % Found
n-Propyl C₃H ₁₁ N₅S	313–315	45.9	45.52	5.26	5.32
<i>n</i> -Butyl C ₉ H ₁₃ N ₅ S	290-291	48.5	49.0	5.82	6.04
$\begin{array}{c} Isobutyl\\ C_9H_{13}N_5S \end{array}$	330-332	48.5	48.23	5.82	5.55
Isoamyl C₁0H₁5N₅S	317-319	50.6	50.43	6.33	6.04
2 -Methylbutyl $C_{10}H_{15}N_5S$	322325	50.6	50.6	6.33	6.31
n -Aniyl $\mathrm{C}_{10}\mathrm{H}_{1b}\mathrm{N}_{5}\mathrm{S}$	302-304	50.6	50,4	6.32	6.49
$Cyclopentyl C_{10}H_{12}N_5S$	340342	51 .1	50.64	5.52	5,30
$\begin{array}{c} Cyclohexyl\\ C_{11}H_{15}N_5S \end{array}$	357-359	53.0	53.08	6.02	5.91
Ethyl C7H9N₅S	299-302	43.1	42.76	4.62	4.37

Benzyl prepared by the method of Koppel.⁵ ^a Dimethylformamide.

In view of this work another synthetic route was envisioned. 2-Amino-4-chloro-6-hydroxypyrimidine⁷ in 2-ethoxyethanol when treated with the appropriate primary amines gave the desired 2amino-6-hydroxy-4-substituted aminopyrimidines (VI) (see Table I). The 4-alkylamino-2-amino-6-hydroxypyrimidines (VI) were nitrosated, reduced, and formylated, giving in this four-step process the important 2-amino-5-formamido-6-hydroxy-4-substituted aminopyrimidines (VII) shown in Table II. The preparation of VII was

patterned after the method of Bredereck and Edenhofer.⁹ 2-Amino-4-chloro-6-hydroxypyrimidine has previously been treated with methylamine¹⁰ and ethylamine⁷ in a sealed tube at 120° to give the corresponding 4-substituted amino derivatives. A sealed tube was found to be unnecessary. When the primary alkylamine (or aqueous solution of the amine) was passed into the 2-amino-4-chloro-6-hydroxy-

(9) H. Bredereck and A. Edenhofer, Ber., 88, 1306 (1955).

(10) W. E. Fidler and H. C. S. Wood, J. Chem. Soc., 4157 (1957).

R X	R'	М.р., °С.	Carb Calcd.	on, % Found	~- Hydrog Caled.	gen, % Found
n -Propyl $C_{15}H_{17}N_5S$	Benzyl	154	60.2	60.12	5.68	5.67
$n ext{-Propyl} ext{C_{15}H_{15}N_5O_2S}$	o-Nitrobenzyl	120	52.3	52.35	4.65	4.64
$n ext{-Propyl} ext{C}_{15} ext{H}_{1b} ext{Cl}_2 ext{N}_5 ext{S}$	2,4-Dichloro- benzyl	104	48.8	48.71	4.07	4.05
n -Propyl $\mathrm{C}_{12}\mathrm{H}_{14}\mathrm{N}_{8}\mathrm{O}_{2}\mathrm{S}$	1-Methyl-4-nitro- imidazole	208	43.2	43.6	4.19	4.29
n -Propyl $ m C_{15}H_{16} m ClN_6S$	o-Chlorobenzyl	155	54.0	54.04	4.8	4.5
n-Propyl C15H10ClN6S	$p ext{-Chlorobenzyl}$	148	54.0	54.2	4.8	4.96
$n ext{-Propyl} ext{C}_{16} ext{H}_{19} ext{N}_5 ext{S}$	Phenethyl	132	61.3	61.67	6.08	5.93
<i>n</i> -Propyl C ₁₁ H ₁ ;N ₅ S	Isopropyl	98	52.6	52.98	6.76	6.66
$n ext{-Propyl} ext{C}_{15} ext{H}_{16} ext{FN}_5 ext{S}$	o-Fluorobenzyl	151	56.8	56.7	5.05	5 .24
$n ext{-Propyl} ext{C}_{15} ext{H}_{16} ext{BrN}_5 ext{S}$	p-Bromobenzyl	167	47.6	47.9	4.24	4.24
n -Propyl $\mathrm{C}_{10}\mathrm{H}_{13}\mathrm{N}_5\mathrm{O}_2\mathrm{S}\cdot\mathrm{I}$	α-Acetic acid H ₂ O	200 d.	42.1	41.8	5.27	5.22
$n ext{-Propyl} ext{C}_{14} ext{H}_{16} ext{N}_6 ext{S}$	2 Picolyl	139	56.0	55.8	5.34	5.51
$n m -Butyl m C_{10}H_{15}N_5S$	Methyl	109	50.7	50.24	6.33	6.12
n-Butyl C16H19N5S	Benzyl	163	61.4	61.3	6.07	6.03

H₂Nj N		N R	\xrightarrow{X} H_2N		X					
SH SR'										
					~N	IeOH				
-Nitrog		D	Recryst. solvent	Yield, %	λ_{max}	e	$\mathbf{R}'\mathbf{X}$			
Caled.	Found	Prepn.			inµ QQU					
23 . 4	23.7	Α	Pet. ether (60-110°)	87	$\frac{222}{247}$	$28,500 \\ 15,500$	Benzyl chloride			
			+ acetone		314	14,300				
24.4	24.4	Α	Pet. ether $+$	56	222	30,000	o-Nitrobenzyl			
			acetone		245	19,000	chloride			
					314	14,800				
19.0	19.1	Α	Pet. ether $+$	61	223	33,200	2,4-Dichloro-			
			acetone		246	17,100	benzyl chlo-			
					314	14,000	ride			
33.6	33.4	Α	Pet. ether $+$	77	224	33,000	1-Methyl-4-nitro-			
			acetone		314	14,000	5-chloroimid. azole			
21.0	21.1	Α	Pet. ether $+$	78	222	30,000	o-Chlorobenzyl			
			acetone		246	15,500	chloride			
					314	14,000				
21.0	20.9	Α	Pet. ether $+$	80	223	33,350	$p ext{-}Chlorobenzyl$			
			acetone		245	15,000	chloride			
					312	13,400				
22.4	22.3	Α	Pet. ether $+$	65	222	29,100	Phenethyl-			
			acetone		246	18,200	bromide			
					313	16,600				
27.8	27.8	Α	Pet. ether $+$	65	223	22,000	Isopropyl iodide			
			acetone		247	14,000				
					314	12,800				
22.1	21.9	Α	Pet. ether $+$	68	221	26,000	p-Fluorobenzyl			
			acetone		245	15,200	chloride			
					312	13,300				
18.5	18.5	Α	Pet. ether $+$	64	223	30,600	p-Bromobenzyl			
			acetone		245	15,500	bromide			
		-			313	12,800				
24 , 55	24.8	в	Water +	31	223	22,800	Chloroacetic			
			methanol		246	14,200	acid			
<u> </u>	~ -		D (1	- 4	312	13,100				
28.0	27.7	Α	Pet. ether +	74	223	24,600	2-Picolyl chlo-			
			acetone		246	15,600	ride hydro-			
90 F	20.7	C	Dot other 1	00	314	13,500	chloride Dimethyl gylfata			
29.5	29.7	С	Pet. ether +	80	$\begin{array}{c} 223 \\ 246 \end{array}$	23,300 14,700	Dimethyl sulfate			
			acetone		$\frac{240}{312}$	14,700 11,600				
22.4	22.5	Α	Pet. ether $+$	94	$\frac{512}{222}$	27,000	Benzyl chloride			
22. 4	22.0	А	acetone	34	$\frac{222}{247}$	14,800	Denzyr emonide			
			acc/0116		247 314	14,300 14,100				
					014	11,100				

TABLE V

х -Hydrogen, %-М.р., -Carbon, %-R R/ °Ċ. Calcd. Found Caled. Found *n*-Butvl o-Chlorobenzyl 55.255.185.175.28190 $C_{16}H_{18}ClN_{5}S$ n-Butyl *p*-Nitrobenzyl 140 53.653.215.024.92 $\mathrm{C_{16}H_{18}N_6O_2S}$ *n*-Butvl o-Nitrobenzyl 133 53.653.925.025.12 $C_{16}H_{18}N_6O_9S$ *n*-Butyl 1-Methyl-4-nitro-15344.845.254.59 4.64 $C_{13}H_{16}N_8O_2S$ imidazole *p*-Chlorobenzyl 55.25.36*n*-Butyl 173 55.275.18C₁₆H₁₈ClN₅S *n*-Butyl Phenethyl 113 62.362.736.426.33 C17H21N5S 54.37.176.94 *n*-Butyl Isopropyl 11254.3 $C_{12}H_{13}N_5S$ 168 50.250.33 4.2*n*-Butvl 2,4-Dichloro-4.45 C16H17Cl2N5S benzyl *n*-Butvl o-Fluorobenzyl 171 58.057.835.435.5 $C_{16}H_{18}FN_5S$ 136 58.058.25.3*n*-Butyl *m*-Fluorobenzyl 5.43C₁₆H₁₈FN₅S *n*-Butvl *p*-Fluorobenzyl 13258.0 58.05.435.65 $C_{16}H_{18}FN_5S$ *n*-Butyl p-Bromobenzyl 187 49.0 49.164.594.85C₁₆H₁₈BrN₅S n-Butyl α -Acetic acid 199 46.6 46.95.345.4 $C_{11}B_{15}N_5O_2S$ 2-Picolyl 57.457.45.745.92*n*-Butyl 115 $\mathrm{C_{15}H_{18}N_6S}$ 6.03 57.45.74*n*-Butyl 4-Picolyl 18057.4 $C_{15}H_{13}N_6S$

May, 1962

(continued)

(continue	ed)					[eOH	
-Nitrog	en. %-		Recryst.	Yield,	λ_{max}		
Calcd.	Found	Prepn.	solvent	%	mμ	e	$\mathbf{R}'\mathbf{X}$
20.1	19.8	Α	Pet. ether $+$	86	222	29,400	o-Chlorobenzyl
			acetone		246	15,100	chloride
					314	13,900	
23.5	23.6	Α	Pet. ether $+$	97	222	27,800	$p ext{-Nitrobenzyl}$
			acetone		246	17,900	chloride
					313	16,500	
23.5	23.2	Α	Pet. ether $+$	63	222	29,000	<i>o</i> -Nitrobenzyl
			acetone		245	18,600	chloride
					314	14,700	
32.2	32.1	Α	Pet. ether $+$	77	224	34,500	1-Methyl-4-nitro-
			acetone		312	14,000	5-chloroimid-
							azole
20.1	20.3	Α	Pet. ether $+$	89	223	34,000	$p ext{-}Chlorobenzyl$
			acetone		246	14,200	chloride
					314	13,700	
21.4	21.2	Α	Pet. ether $+$	40	222	19,900	β -Phenethyl
			acetone		243	13,700	bromide
					313	13,700	
26.4	26.1	Α	Pet. ether	56	223	21,600	Isopropyl iodide
			(60-110°)		247	13,800	
					314	12,600	
18.3	18.3	Α	Pet. ether $+$	77	223	32,900	2,4-Dichloro-
			acetone		245	16,800	benzyl chlo-
			_		314	14,300	ride
21.1	21.0	Α	Pet. ether $+$	72	222	26,600	o-Fluorobenzyl
			acetone		246	15,200	chloride
	~~ -			-0	314	13,900	
21.1	20.9	Α	Pet. ether $+$	72	222	30,500	<i>m</i> -Fluorobenzyl
			acetone		246	16,200	chloride
	<u> </u>		D ()	10	314	14,200	
21.1	20.8	Α	Pet. ether $+$	49	222	23,400	<i>p</i> -Fluorobenzyl
			acetone		247	14,200	chloride
17.0	17 7		Det ether 1	40	314	13,400	<i>p</i> -Bromobenzyl
17.9	17.7	Α	Pet. ether +	42	$\frac{223}{245}$	33,400	p-Bromide
			acetone			16,800	bronnde
04.0	05 A	в	Watan	5.6	314	13,900	Chloroacetic
24.9	25.0	Б	Water + methanol	56	$\begin{array}{c} 223 \\ 247 \end{array}$	$21,300 \\ 13,500$	acid
			methanoi		247 313	13,500 12,900	acia
26.8	26.4	А	Pet. ether +	76	223	12,900 23,500	2-Picolyl chlo-
20.8	20.4	А	acetone	70	$\frac{223}{246}$	23,300 15,100	ride hydro-
			acetone		$\frac{240}{314}$	13,100 13,200	chloride
26.8	26.3	Α	Pet. ether $+$	78	224	24,800	4-Picolyl chlo-
20.0	20.0		acetone	10	224 245	15,700	ride hydro-
			account		314	13,800	chloride
					011	10,000	0

TABLE V

R	R′	м.р., °С.	—Carbo Galed.	n, %— Found	—Hydro Calcd.	gen, % Found
$\begin{array}{c} Cyclohexyl\\ C_{18}H_{21}N_5S \end{array}$	Benzyl	213	63.8	6 4.03	6.2	6.2
$\begin{array}{c} Cyclohexyl\\ C_{18}H_{20}ClN_5S \end{array}$	o-Chlorobenzyl	218	57.8	57 .9	5.36	5.41
$\begin{array}{c} \text{Isobutyl} \\ \text{C}_{16}\text{H}_{19}\text{N}_{5}\text{S} \end{array}$	Benzyl	185	61.4	61.9	6.07	6.28
$\begin{array}{c} Isobutyl \\ C_{16}H_{18}ClN_5S \end{array}$	o-Chlorobenzyl	167	55.2	55.53	5.17	5.19
$\begin{array}{c} Isobutyl\\ C_{16}H_{18}ClN_5S \end{array}$	p-Chlorobenzyl	188	55.2	55.34	5.17	4.98
$\begin{array}{c} Isobutyl \\ C_{16}H_{17}Cl_2N_5S \end{array}$	2,4-Dichloro- benzyl	140	50.2	50.63	4.45	4.35
$\begin{array}{c} Isobutyl\\ C_{13}H_{16}N_{5}O_{2}S\end{array}$	1-Methyl-4-nitro- imidazole	180	44.8	45.1	4.59	4.72
$\begin{array}{c} Isobutyl \\ C_{16}H_{18}N_6O_2S \end{array}$	o-Nitrobenzyl	120	53.7	53.86	5.01	4.84
$\begin{array}{c} Isobutyl \\ C_{17}H_{21}N_5S \end{array}$	Phenethyl	123	62.3	62.59	6.42	6.17
$\begin{array}{c} Isobutyl \\ C_{12}H_{19}N_5S \end{array}$	Isopropyl	149	54.3	54.44	7.17	7.03
$\begin{array}{c} Isobutyl \\ C_{12}H_{19}N_5S \end{array}$	n-Propyl	103	54.3	53.75	7.17	6.83
$\begin{array}{c} Isobutyl \\ C_{16}H_{18}FN_5S \end{array}$	o-Fluorobenzyl	184	58.0	58.3	5.43	5.71
$\begin{array}{c} Isobutyl\\ C_{13}H_{21}N_5S \end{array}$	Isobutyl	113	55.9	56.21	7.53	7.53
$\begin{array}{c} Isobutyl \\ C_{18}H_{23}N_5S \end{array}$	γ -Phenylpropyl	164	63.2	63.72	6.73	6.36
$\begin{array}{c} Isobutyl \\ C_{16}H_{18}BrN_5S \end{array}$	<i>p</i> -Bromobenzyl	199	49.0	49.45	4.59	4.47

May, 1962

(continued)

-Nitrog	en, %—		Recryst.	Yield,	λ _{max} ,	IeOH	
Calcd.	Found	Prepn.	solvent	%	$\mathbf{m}\boldsymbol{\mu}$	e	$\mathbf{R}'\mathbf{X}$
20.6	20.3	Α	Pet. ether $+$	74	222	27,100	Benzyl chloride
			acetone		246	14,900	
					312	14,600	
18.8	18.85	Α	Pet. ether $+$	53	222	29,100	o-Chlorobenzyl
			acetone		245	15,000	chloride
					312	14,000	
22.4	22.6	Α	Pet. ether $+$	57	222	29,800	Benzyl chloride
			acetone		247	16,000	
					314	14,700	
20.1	19.7	Α	Pet. ether $+$	82	222	29,200	o-Chlorobenzyl
			acetone		246	15,300	chloride
					314	13,600	
20.1	20.2	Α	Pet. ether $+$	69	224	34,000	p-Chlorobenzyl
			acetone		247	16,000	chloride
					314	13,900	
18.3	18.2	Α	Pet. ether $+$	85	223	32,800	2,4-Dichloro-
			acetone		245	16,800	benzyl chlo-
					314	14,200	ride
32.2	31.9	Α	Benzene +	78	224	31,700	1-Methyl-4-nitro
			methanol		311	14,000	5-chloroimid-
						,	azole
23.4	23.4	Α	Pet, ether $+$	57	222	29,000	o-Nitrobenzyl
			acetone		245	18,600	chloride
					314	14,700	
21.4	21.4	Α	Pet. ether $+$	67	221	23,700	β -Phenethyl bro-
			acetone		247	14,700	mide
					312	13,900	
26.4	26.2	Α	Pet. ether +	87	223	22,800	Isopropyl iodide
			acetone		247	14,300	1 10
					314	13,200	
26.4	26.2	Α	Pet. ether	97	223	21,800	<i>n</i> -Propyl iodide
			(60-100°)		247	14,600	10
					313	13,000	
21.1	21.0	Α	Pet, ether +	86	222	25,900	o-Fluorobenzyl
			acetone		246	14,900	chloride
					314	13,700	
25.1	24.9	Α	Pet. ether	34	223	21,800	Isobutyl iodide
			(60–110°)		247	14,500	
			(<i>)</i>		312	13,400	
20.5	20.5	Α	Pet. ether +	57	221	22,800	γ -Phenylpropyl
			acetone	•••	247	15,000	bromide
					312	13,800	
	17.4	Α	Pet. ether +	91	223	34,000	<i>p</i> -Bromobenzyl
17.9	TI ' T						
17.9	11.1		acetone	01	245	17,200	bromide

TABLE V

x					—Hydrogen. %—		
R	\mathbf{R}^{\prime}	М.р., °С.	Carb Caled.	on, %-— Found	-Hydro Caled.	Found	
fsobutyl C16H18FN5S	<i>m</i> -Fluorobenzyl	138	58.0	58.24	5.43	5.39	
$\begin{array}{c} Isobutyl\\ C_{15}H_{18}N_6S \end{array}$	2-Picolyl	146	57.4	57.1	5.74	5 .89	
$\begin{array}{c} Isobutyl\\ C_{11}H_{15}N_5O_2S \end{array}$	α -Acetic acid	197	47.0	47.4	5.33	5.5	
$\begin{array}{c} Cyclopentyl\\ C_{17}H_{19}N_5S \end{array}$	Benzyl	215	62.8	62. 8 9	5.26	5.78	
$\begin{array}{c} Cyclopentyl\\ C_{16}H_{18}N_6S \end{array}$	2-Picolyl	148	58.9	59.12	5.52	5.48	
Benzyl C ₁₃ H ₁₃ N ₅ S	Methyl	210	57.7	57.51	4.8	5.03	
Benzyl C ₁₉ H ₁₇ N ₅ S	Benzyl	157	65.8	65.89	4.9	4.98	
Benzyl C ₁₉ H ₁₆ N ₆ O ₂ S	o-Nitrobenzyl	152	58.3	58.19	4.08	3.92	
$\begin{array}{c} Benzyl\\ C_{16}H_{14}N_{8}O_{2}S \end{array}$	l-Methyl-4-nitro- imidazole	245	50.3	50 .9	3.67	3.8	
2-Methyl- butyl C ₁₇ H ₂₀ FN ₅ S	o-Fluorobenzyl	177	59.1	59.2	5.7	5.88	
$\begin{array}{c} \text{C}_{17}\text{H}_{20}\text{P}\text{H}_{5}\text{S}\\ \text{2-Methyl-}\\ \text{butyl}\\ \text{C}_{12}\text{H}_{17}\text{N}_{5}\text{O}_{2}\text{S} \end{array}$	α -Acetic acid	165	48.8	48.8	5.76	5.76	
$\begin{array}{c} \text{C}_{12}\text{I1}_{17}\text{V}_{5}\text{C}_{2}\text{S}\\ \text{2-Methyl-}\\ \text{butyl}\\ \text{C}_{16}\text{H}_{20}\text{N}_{6}\text{S} \end{array}$	2-Picolyl	127	58.5	58.5	6. 0 9	6.02	
$\begin{array}{c} \text{C}_{16}\text{H}_{20}\text{V}_{6}\text{S}\\ \text{2-Methyl-}\\ \text{butyl}\\ \text{C}_{14}\text{H}_{18}\text{N}_{8}\text{O}_{2}\text{S} \end{array}$	1-Methyl-4-nitro- imidazole	200	46.4	46.2	4.97	5.2	
$\begin{array}{c} \text{C}_{14}\text{I}_{18}\text{V}_{8}\text{O}_{2}\text{S}\\ \text{2-Methyl-}\\ \text{butyl}\\ \text{C}_{17}\text{H}_{21}\text{N}_{5}\text{S} \end{array}$	Benzyl	168	62.3	62.05	6.41	6.23	
2-Methyl- butyl C ₁₄ H ₂₃ N ₅ S	<i>n</i> -Butyl	103	57.3	56.85	7.86	7.75	

May, 1962

(continued)

					M	eOH	
-Nitrog	en, %—		Recryst.	Yield,	λ_{max}		
Calcd	Found	Prepn.	solvent	%	mμ	e	$\mathbf{R}'\mathbf{X}$
21.1	21.3	Α	Pet. ether $+$	88	222	26,000	<i>m</i> -Fluorob en zyl
			acetone		246	14,600	chloride
					314	13,600	
26.8	26.4	Α	Pet. ether $+$	91	223	24,000	2-Picolyl chlo-
			acetone		246	15,600	ride hydro-
					314	13,500	chloride
24.9	24.5	в	Water +	91	222	23,000	Chloroacetic
			methanol		246	14,300	acid
					310	13,400	
21.5	21.8	Α	Water +	55	222	26,800	Benzyl chloride
			methanol		247	14,600	·
					313	14,300	
25.75	25.7	Α	Water +	79	223	25,000	2-Picolyl chlo-
			methanol		246	15,400	ride hydro-
					313	14,000	chloride
25.8	26.0	С	Methanol	67	247	16,000	Dimethyl sulfate
					312	13,600	-
20.2	20.4	Α	Pet. ether $+$	82	247	14,600	Benzyl chloride
			acetone		314	15,200	
21.4	21.1	Α	Pet. ether $+$	81	246	19,200	o-Nitrobenzyl
			acetone		314	15,500	chloride
29.3	29.5	Α	Methanol	85	224	28,000	1-Methyl-4-nitro-
					313	12,800	5-chloroimid-
							azole
20.3	20.0	Α	Pet. ether $+$	76	222	26,000	o-Fluorobenzyl
			acetone		246	15,200	chloride
					314	13,,800	
23.7	23.8	в	Water +	83	222	21,000	Chloroacetic
			methanol		246	13,200	acid
					312	13,200	
25.6	25.5	Α	Pet. ether $+$	68	223	23,500	2-Picolyl chlo-
			acetone		246	15,200	ride hydro-
					314	13,400	chloride
30.95	30.7	Α	Pet. ether $+$	80	225	30,000	1-Methyl-4-nitro-
			acetone		314	14,100	5-chloroimid-
							azole
21.4	21.5	Α	Pet. ether $+$	64	222	26,200	Benzyl chloride
			acetone		247	14,700	
			_		313	14,000	
23.85	23.85	Α	Pet. ether	36	223	22,000	<i>n</i> -Butyl iodide
					247	14,400	
					312	13,200	

TABLE V

х		М.р.,	Carb	on, %	-Hydro	ogen, %—
R	R'	°C.	Calcd.	Found	Calcd.	Found
n -Amyl $ m C_{17}H_{21} m N_5S$	Benzyl	149	62.3	62.37	6.41	6.23
Isoamyl C ₁₇ H ₂₀ FN ₅ S	o-Fluorobenzyl	175	59.1	59.0	5.7	5.91
$\begin{array}{c} Isoamyl\\ C_{12}H_{17}N_5O_2S\end{array}$	α -Acetic acid	209	48.8	49.15	5.76	5.8

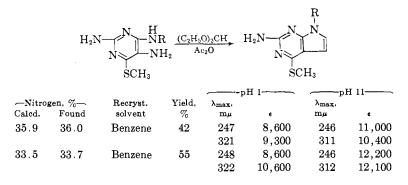
TABLE VA

х	M.p.,	Carb	on, %——	Hydrogen, %		
R	°Ċ	Calcd.	Found	Caled.	Found	
Methyl	190	43.0	43.22	4.6	4.55	
$C_7H_9N_5S$						
$\mathbf{E}\mathbf{thyl}$	165	46.0	46.11	5.27	5.31	
$C_8H_{11}N_5S$						

pyrimidine in refluxing ethoxyethanol, a good yield of the desired product, VI, was obtained. This procedure was found to be especially useful for large-scale runs.

The 5-formamido derivatives (VII) were cyclized readily to the appropriate 9-alkylguanines (VIII) by the use of formamide in the presence of a small amount of formic acid. These 9-alkylguanines (VIII) are listed in Table III. Several of these 9-alkylguanines ($\mathbf{R} = \text{isobutyl}$, benzyl, cyclohexyl, and isoamyl¹¹) have been prepared previously.⁵ The 9-alkylguanines (VIII) were then converted to corresponding 9-alkyl-2-amino-6-purinethiols (IX) by use of phosphorus pentasulfide in pyridine.⁴ These derivatives are listed in Table IV. Treatment of the 9-alkyl-2-amino-6-purinethiols (IX) with the appropriate alkyl halide (Table V) in the presence of base gave the desired 9-alkyl-6-alkylthio-2-aminopurines listed in Table V.

Discussion of Antitumor Testing Data


The testing procedures employed have been adequately described

⁽¹¹⁾ Ref. 5, Table III, the fourth compound listed, "R" actually should be isoamyl,

May, 1962

(continued)

					~N	∕IeOH-——	
-Nitrog	gen, %—		Recryst.	Yield,	λmax.		
Caled.	Found	Prepn.	solvent	%	mμ	e	$\mathbf{R}'\mathbf{X}$
21.4	20.7	Α	Pet. ether $+$	75	222	23,000	Benzyl chloride
			acetone		247	13,000	
					313	12,400	
20.3	20.3	Α	Pet. ether $+$	79	222	26,000	o-Fluorobenzyl
			acetone		246	14,900	chloride
					314	13,800	
23.7	23.9	в	Water +	86	222	22,400	Chloroacetic
			methanol		246	14,200	acid
					310	13,600	

previously.¹² All testing was conducted under the auspices of the Cancer Chemotherapy National Service Center. 2-Amino-6-purinethiol (thioguanine) has been found to be a potent inhibitor of animal neoplasms¹³ and human leukemia.¹⁴ The therapeutic index of thioguanine is approximately 4 against Adenocarcinoma 755.¹⁵ Inspection of Table X would reveal that a rather large number of the 9-alkyl and 9-alkyl-6-alkylthio derivatives of thioguanine possess a therapeutic index much *superior* to the parent compounds.

The compound 2-amino-9-*n*-propyl-6-purinethiol (NSC 40669) is especially noteworthy since it possesses a therapeutic index of 64 against the same tumor line. It is of considerable interest that NSC 40669 is also active at a lower dosage than thioguanine itself (see Table IX).

(12) J. Leiter, A. R. Bourke, S. A. Schepartz, and I. Wodinsky, Cancer Res. 20, 734 (1960).

 ⁽¹³⁾ D. A. Clarke, F. S. Philips, S. S. Sternberg, and C. C. Stock, Ann. N. Y. Acad. Sci.,
 60, 235 (1954).

⁽¹⁴⁾ M. L. Murphy, C. T. C. Tan, R. R. Ellison, D. A. Karnofsky, and J. H. Burchenal, Proc. Am. Assoc. Cancer Research, 2, 36 (1955).

⁽¹⁵⁾ H. E. Skipper, J. A. Montgomery, J. R. Thomson, and F. M. Schabel, Jr., Cancer Research, 19, 425 (1959).

TABLE VI

1	М.р.,	Carbo		—Hydrog		Nitroge	
R	°C.	Calcd.	Found	Calcd.	Found	Calcd.	Found
Methyl	160	37.8	38.0	4.42	4.28	35.3	35.1
$C_{5}H_{7}ClN_{4}$							
Ethyl	153	41.7	42.3	5.21	5.31	32.5	36.6
$C_6H_9ClN_4$							
$n ext{-Propyl}$	105	45.0	45.29	5.9	5.96	30.0	30.4
$C_7H_{11}ClN_4$							
<i>n</i> -Butyl	95	47.8	48.0	6. 5	6.83	27.9	28.0
$C_8H_{13}ClN_4$							
Allyl	120	45.5	45.9	4.87	4.65	30.3	30.3
Č7H₃ClN₄							
Benzyl	129	56.3	56.34	4.7	4.62	23.8	23.9
$C_{11}H_{11}ClN_4$							

TABLE VII

II	M.p.,	Carbon	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Hydroger	n, %—
R	°C.	Calcd.	Found	Calcd.	Found
$egin{array}{cl} { m Methyl} { m C}_{5}{ m H}_{8}{ m N}_{4}{ m S} \end{array}$	295^{a}	38.5	38.86	5.12	5.13
$\begin{array}{c} Ethyl \\ C_6H_2N_4S{\cdot}H_2O \end{array}$	224^{a}	38.3	38.58	6.39	6.39
$n ext{-Propyl} ext{C}_7 ext{H}_{12} ext{N}_4 ext{S}$	268^{a}	45.6	45.65	6.52	6.75
$n m -Butyl C_8H_{14}N_4S$	231ª	48.5	48.96	7.08	7.18
$\begin{array}{c} Benzyl\\ C_{11}H_{12}N_4S \end{array}$	212^{k}	5 6.9	56.78	5.17	5.10

^a All of these compounds showed a gradual decomposition and finally melted at the temperature recorded. ^b This compound melted sharply with no decom-

LePage and Jones³ have found 2-amino-9-methyl-6-purinethiol and 2-amino-9-*n*-butyl-6-purinethiol to inhibit Ehrlich ascites tumor. These 9-alkyl derivatives of thioguanine were found³ not to be converted to the nucleotide form *in vivo*. Since Sartorelli and LePage^{16,17} have shown that thioguanine acts at more than one site in purine

⁽¹⁶⁾ A. C. Sartorelli and G. A. LePage, Cancer Research, 18, 1329 (1958).

⁽¹⁷⁾ G. A. LePage, ibid., 20, 403 (1960).

	H₂l		-Cl	RNH ₂	. H		H -NR 1	
		Ċı	pH 1		-—	Ċl		
Recryst.	Yi	eld, λ _m		5	max.	11		
solvent		% ni			mμ	e	RN	H_2
Water	9	91 27	76 6,0	000	237	8,700	40% Met	hylamine
		30)2 4,8	300	287	7,500	in wate	r
Benzene	9	98 27	777,1	.00	238	9,500	70% Eth	ylamine
		30)3 5,4	100	288	8,800	in wate	r
Heptane-	. (95 - 27	787,5	500	238	9,800	n-Propyla	mine
benzene	е	30	4 5,8	600	288	9,000		
Heptane	8	35 27	77,4	-00	239	9,800	n-Butylar	nine
		30)4 5,6	600	288	9,000		
Heptane-	. ę	22 27	6 8,7	'00	237	10,700	Allylamin	e
benzene	е	30)4 5,0	000	288	9,900		
Heptane-	. (99 27	75 9,1	.00	237	13,100	Benzylam	ine
methan	ol	30	5 4,0	00	288	10,500		
Н	I₂N N≈		RNa (140-	SH 150°)	H ₂ N		I IR II	
						pH 1	—–––––––––––––––––––––––––––––––––––––	H 11
-Nitrogen	. %-		Recryst.	Yield	λ_{max}	•	λmax,	
Calcd,	Found	Prepn,	solvent	%	mµ	e	mμ	e
35.8	35.6	в	Water	56	330	24,000	232	18,800
							303	19,500
29.75	30.2	в	Water	83	330	24,600	233	16,600
							304	18,500
30.4	30.7	Α	Water	79	330	28,100	234	19,600
							305	20,400
28.3	28.6	Α	Water	94	330	29,100	233	21,800
							304	19,800
24.1	24.0	В	Water	79	330	20,400	234	18,100
nosition as	n <i>a</i> 0						304	20,400

position range.

metabolism, it is quite possible that the 9-alkyl derivatives described in the present work act at only one site. Thus, the superior therapeutic indices (see Table X) of a number of these derivatives over that of thioguanine in Ad 775 probably result from a more selective action of the antitumor drug. Thus, according to LePage³ the 9alkylated 2-amino-6-purinethiols appear to have an entirely different mechanism of action from that of thioguanine. Support for this

TABLE VIII

II	I							
		М.р.,	Carb	on, %	Hydro	gen, %	Nitrog	en, %
R	\mathbf{R}'	°C.	Calcd.	Found	Calcd.	Found	Caled.	Found
CH_3	CH_3	134	42.3	42.29	5.9	5.75	32.9	33.1
$C_{6}H_{10}N_{4}S$	3							
CH_3	C_2H_5	118	45.6	45.04	6.52	6.67	30.5	30.8
$\mathrm{C_7H_{12}N_4S}$	3							
CH_3	$C_6H_5CH_2$	180	58.5	58.24	5 .7	5.74	22.7	22.5
$C_{12}H_{14}N_4$	s							
C_2H_5	CH_3	168	45.6	45.24	6.52	6.19	30.5	30.3
$C_7H_{12}N_4S$	8							
C_2H_5	C_2H_5	120	48.5	49.02	7.06	7.15	28.4	28.6
$C_8H_{14}N_4S$	3							
C_2H_5	$C_6H_5CH_2$	113	60.0	60.04	6.16	6.54	21.6	21.8
$C_{13}H_{16}N_4$	s							
$C_6H_5CH_2$	\mathbf{CH}_{3}	115	58.4	58.6	5.68	5.69	22.7	22.5
$C_{12}H_{14}NS$	3							

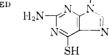
statement was found³ in that a thioguanine-resistant line of ascites tumor cells was not completely cross-resistant to 2-amino-9-methyl-6-purinethiol.

It might be argued that *in vivo* dealkylation at position 9 is responsible for antitumor activity since such dealkylation would give rise to thioguanine. With mice bearing Ehrlich and Mecca ascites tumors. LePage and Jones³ have investigated this possibility and reported that no dealkylation took place. The antitumor activity of two of these compounds has been studied in Sarcoma 180 (see Table XI). In several experiments the inhibition by 2-amino-9-*n*-propyl-6-purinethiol (NSC 40669) is greater than that observed for thioguanine with the same tumor¹⁸; however, additional testing is required to verify these data.

It would appear that the 9-alkyl derivatives of thioguanine described in the present work represent a class of antitumor agents which are worthy of further investigation. These agents should be examined carefully for their activity against a variety of tumors. It would be especially interesting to evaluate these agents against 6-mercaptopurine- and 6-thioguanine-resistant tumor lines. It is also possible that the 9-alkyl derivatives may act synergistically with the usual purine antagonists since the formation of the purine ribotide is

⁽¹⁸⁾ D. A. Clarke, G. B. Elion, G. H. Hitchings, and C. C. Stock, Cancer Research, 18, 445 (1958).

	H ₂ N- N SH	-		R'X	H ₂ N—	N H N SR	R
	11			TT 1		III	
	Recryst.	Yield.	λmax	pH 1	μ λ _{max} ,	H 11	
Prepn.	solvent	7%	mµ	e	m _µ	e	$\mathbf{R}'\mathbf{X}$
Ā	Water	80	228	19,800	232	21,600	$CH_{3}I$
		_	286	15,200	290	11,000	- •
Α	Water	93	230	17,100	233	21,200	C_2H_5I
			288	14,400	291	11,400	
в	Benzene	83	290	12,000	234	20,700	$C_6H_5CH_2Cl$
					293	10,400	
Α	Water	84	229	17,700	232	22,800	$CH_{3}I$
			287	15,400	290	11,800	
Α	Water	83	230	17,200	233	21,100	C_2H_5I
			288	14,800	291	11,600	
В	Benzene	85	289	12,600	234	18,200	$C_6H_5CH_2Cl$
					293	9,100	
Α	Pet. ether	94	230	20,400	232	29,500	$CH_{3}I$
	$(60-110^{\circ})$ + acetone		288	17,200	290	14,000	


blocked due to the presence of the 9-alkyl group. The use of combination therapy utilizing more than one purine derivative at one time should be carefully examined, especially where there is evidence of difference of mechanism of action among the purines. This would seem to be a particularly attractive area for further investigation, especially since these various active purine derivatives are quite likely to exert their antitumor action at different points along the same metabolic pathway.

Experimental¹⁹

Preparation of 2-Amino-6-hydroxy-4-substituted Aminopyrimidines (VI) (Table I): **Method A.**—To 25 g. of 2-amino-4-chloro-6-hydroxypyrimidine⁷ placed in a flask equipped with a special Friedrichs condenser designed to remove a low boiling component, and a dropping funnel extending to the bottom of the flask was added 150 ml. of 2-ethoxyethanol, and the mixture was stirred and brought to a moderate reflux. The appropriate amine (50–60 g.) (Table I) was added in a steady stream. The excess amine, which vaporized and passed through the solution, was collected along with a small amount of 2-ethoxyethanol. It is important that the amine be added at such a rate that the temperature of the solution does not fall greatly below that of the boiling 2-ethoxyethanol. After all the amine had been added and all solid material had dissolved, the collected amine was once again passed through the boiling solution. The clear, red solution was then

(19) All melting points were taken on a Fisher-Johns melting point apparatus and are uncorrected unless otherwise indicated.

TABLE IX

R

Minimum dosage (mg./kg./day)

OMPARISON OF DOSAGE REQUIRED	
FOR EFFECTIVE INHIBITION OF	H ₂ N
Adenocarcinoma 755	N≈

NSC No.	R	necessary to achieve 90% inhibition of Adenocarcinoma 755
(Thioguanine)	Н	$pprox 0.5^a$
26290	CH_3	125
40660	C_2H_5	≈3.5
40669	$n-C_{3}H_{7}$	<0.2
39336	$n-C_4H_9$	1.0
42378	iso-C ₄ H ₉	≈3.0
58907	n-C ₅ H ₁₁	12.5
50717	iso-C ₅ H ₁₁	12.5
52446	$C_{5}H_{11}$ (2-methylbutyl)	≈ 12.5
56455	Cyclopentyl	≈5.0
29609	$\mathrm{CH}_{2}\mathrm{C}_{6}\mathrm{H}_{5}{}^{b}$	≈400
56456	Cyclohexyl	Inactive
29608	$n - C_{10} H_{21}{}^{b}$	Inactive
27611	$C_6H_5{}^b$	Inactive
29576	p-ClC ₆ H ₄ ^{ii}	Inactive

^a Ref. 15. ^b Ref. 5.

TABLE X

Comparison of Therapeutic Indices of 9-Alkyl-2-amino-6-purinethiols and Related Derivatives against Carcinoma 755

Max.

NSC No.	R	\mathbf{R}_1	Thera- peutic index ^a	degree of effectiveness T/C at MTD
40669	n-Propyl	н	64	0.01
51473	n-Butyl	2-Pyridylmethyl	35	0.00
44580	n-Propyl	o-Chlorobenzyl	32	0.00
39336	n-Butyl	Н	30	0.00
47781	<i>n</i> -Butyl	1-Methyl-4-nitro- 5-imidazolyl	17	0.03
51471	n-Propyl	2-Pyridylmethyl	17	0.00
59486	Cyclopentyl	2-Pyridylniethyl	16	0.00
44585	Isobutyl	1-Methyl-4-nitro- 5-imidazolyl	16	0.00

TABLE X (continued)

NSC No.	R	\mathbf{R}_1	Thera- peutic index ^a	Max degree of effectiveness T/C at MTD
48719	Isobutyl	n-Propyl	16	0.00
49820	$n ext{-Butyl}$	p-Fluorobenzyl	16	0.00
43414	n-Propyl	p-Chlorobenzyl	16	0.00
49817	n-Propyl	o-Fluorobenzyl	16	0.00
51478	2-Methylbutyl	1-Methyl-4-nitro- 5-imidazolyl	9	0.01
56455	Cyclopentyl	н	8	0.00
42381	Isobutyl	Benzyl	8	0.04
48724	Isobutyl	<i>m</i> -Fluorobenzyl	8	0.00
48721	Isobutyl	Isobutyl	8	0.00
48720	Isobutyl	o-Fluorobenzyl	8	0.00
47780	n-Butyl	Isopropyl	8	0.00
42382	n-Butyl	Benzyl	8	0.00
49818	n-Butyl	o-Fluorobenzyl	8	0.01
44584	n-Propyl	1-Methyl-4-nitro- 5-imidazolyl	8	0.00
51472	<i>n</i> -Propyl	<i>p</i> -Bromobenzyl	8	0.00
42379	n-Propyl	Benzyl	8	0.01
40660	Ethyl	Н	8	0.05
36836	Ethyl	Methyl	8	0.01
52445	Isobutyl	2-Pyridylmethyl	6	0.01
42378	Isobutyl	н	4	0.00
48723	Isobutyl	<i>p</i> -Bromobenzyl	4	0.18
48722	Isobutyl	3-Phenylpropyl	4	0.08
47784	Isobutyl	Isopropyl	4	0.01
47783	Isobutyl	Phenethyl	4	0.03
42383	<i>n</i> -Butyl	o-Chlorobenzyl	4	0.05
48718	<i>n</i> -Butyl	2,4-Dichlorobenzyl	4	0.05
49819	$n ext{-Butyl}$	<i>m</i> -Fluorobenzyl	4	0.00
47778	n-Propyl	Isopropyl	4	0.00
51477	2-Methylbutyl	2-Pyridylmethyl	4	0.23
50717	Isopentyl	Н	4	0.01
42384	Benzyl	Benzyl	4	0.07
51474	$n ext{-Butyl}$	4-Pyridylmethyl	2	0.01
52446	$2 ext{-Methylbutyl}$	Н	2	0.02

^a Therapeutic index is defined by the Cancer Chemotherapy National Service Center for Adenocarcinoma 755 as: Therapeutic Index = $\frac{\text{MTD}}{\text{MED}}$, where M.T.D.

= (Maximum Tolerated Dose) killing not more than 3 out of 10 animals (LD_{30}) with a weight loss between treated and control animals of 5 g. or less. M.E.D. = lowest dosage having a T/C of 40% or less.

TABLE XI

Evaluation of the Antitumor Activity of 9-Alkylthioguanine Derivatives against Carcinoma 755

R	R1	Dose (mg./kg.)	Sur- vivors	Wt. change (test/ control)	Tumor wt. (test/ control)	T/C
					0010101)	1/0
$(GH_2)_3CH_3$	H	$500 \\ 125$	0/10 0/10	toxic		
		60	0/10 0/10	toxie toxie		
		30	0/10	toxic		
		15	1/10	-3.6/-1.2	/1242	toxic
		7.5	7/10	-3.6/-0.6	0/475	0.00
		3.75	8/10	-3.3/-0.9	0/1042	0.00
		3.75	9/10	-2.4/-0.6	17/475	0.03
		1.87	9/10	-2.4/-0.6	50/475	0.10
		1	9/10	-2.4/-0.1	139/1163	0.11
		0.50	10/10	-2.1/-0.1	190/1163	0.16
		0.25	10/10	-0.4/-0.1	694/1163	0.59
		0.12	8 /10	-0.8/-0.1	694/1163	0.59
$(CH_2)_2CH_3$	Н	14	2/10	-5.1/1.7	12/1136	toxic
		7	8/10	= 3.7/1.7	20/1136	0.01
		6.75	10/10	-4.1/0.6	24/1140	0.02
		6.75	3/10	-3.4/0.7	100/1352	toxic
		8.5	8/10	-2.8/1.7	37/1136	0.03
		1.75	10/10	-2.2/1.7	30/1136	0.02
		1.75	10/10	-0.3/2.9	91/1830	0.04
		0.88	10/10	-0.1/2.9	77/1830	0.04
		$0.44 \\ 0.22$	9/10 10/10	-0.5/2.9 -1.1/2.9	151/1830	0.08 0.07
		0.22	10/10	-1.1/2.9 1.2/2.4	$\frac{143}{1830}$ $\frac{107}{1587}$	0.07
		0.11	10/10	0.6/2.4	723/1587	0.00
		0.06	10/10	1.8/2.4	1313/1387	0.82
CH ₂ CH(CH ₃) ₂	н	31.25	8/10	-4.3/-0.4	0/1032	0.00
0112011(0113)2	11	15.62	2/10	-5.6/-0.3	0/1032 0/1120	toxic
		7.81	8/10	-4.2/-0.4	0/1032	0.00
		7.81	8/10	-2.0/-0.3	0/1120	0.00
		3.9	10/10	-1.8/-0.4	60/1032	0.05
		3.9	10/10	-2.0/-0.3	30/1120	0.02
		1.95	10/10	-1.8/-0.3	422/1120	0.37
		0.98	10/10	-1.3/-0.3	525/1120	0.46
(CH ₂) ₂ CH ₃	$GH_2C_{\theta}H_4Cl-o$	200	1/10	-2.2/0.5	/996	toxic
		200	0/10	toxic		
		100	8/10	-2.4/0.5	0,/996	0.00
		100	10/10	-2.3/0.1	0/1573	0.00
		50	10/ 10	-1.9/0.5	10/996	0.01
		50	10/10	-1.7/0.1	15/1573	0.00
		25	$\frac{10}{10}$	-2.2/0.5	65/996	0,06
		25	7/10	-1.6/0.4	7/1033	0.00
		$25 \\ 12.5$	10/10 10/10	-1.2/0.1 -1.8/0.4	$\frac{122}{1573}$ $\frac{15}{1033}$	0.07 0.01
		12.5 12.5	10/10 10/10	-1.2/0.4	680/1573	0.43
		6.25	10/10	-1.1/0.4	239/1033	0.23
		6.25	8/10	-0.7/0.1	950/1573	0.60
		3.12	10/10	-0.1/0.4	500/1033	0.48
		3.12	10/10	-0.3/0.1	980/1573	0.62
		1.56	9/10	-0.9/0.4	363/1033	0.35

TABLE XI (continued)

		I ADDD 111	(0000000	<i>a</i> co <i>(</i>)		
P	_	Dose	Sur-	Wt. change (test/	Tumor wt. (test/	-
R	\mathbf{R}_1	(m g./kg.)	vivors	control)	control)	T/C
		1.56	10/10	-0.5/0.1	1140/1573	0.72
		0.78	9/10	-0.1/0.1	1350/1573	0.85
CH ₂ CH(CH ₃) ₂		200	0/10	toxic		
	CH.	100	5/10	-2.2/2.8	50/1669	toxic
	1	100	1/10	-4.9/0.1	/1573	toxic
	- <u></u> N	50	8/10	-1.3/2.8	44/1669	0.02
		50	5/10	-3.4/-1.9	0/311	toxic
	$O_2 N = M$	50	7/10	-2.4/-0.3	0/731	0.00
		50	8/10	-4.1/0.1	0/1573	0.00
		25	8/10	-2.2/2.8	38/1669	0.02
		25	8/10	-2.4/-1.9	13/311	0.04
		25	9/10	-1.6/-0.3	0/731	0.00
		25	10/10	-2.5/0.1	35/1573	0.02
		12.5	8/10	-1.7/-1.9	13/311	0.04
		12.5	9/10	-1.9/-0.3	17/731	0.02
		12.5	9/10	-1.3/0.1	119/1573	0.07
		6.25	9/10	-1.2/-1.9	250/311	0.80
		6.25	10/10	-1.4/-0.3	75/731	0.10
		6.25	9/10	-1.4/0.1	356/1573	0.22
		3.12	10/10	-1.4/-1.9	135/311	0.43
		3.12	8/10	-1.7/-0.3	69/731	0.09
		3.12	7/10	-1.9/-2.0	257/523	0.49
		3.12	9/10	-1.1/0.1	761/1573	0.48
		1.56	10/10	-1.6/-2.0	240/523	0.45
		1.56	3/10	-0.3/0.1	1217/1573	toxic
		0.78	8/10	-1.4/-2.0	431/523	0.82
		0.78	9/10	-1.1/0.1	1083/1573	0.68
		0.39	9/10	-1.4/-2.0	200/523	0.38
		0.39	9/10	-0.8/0.1	1111/1573	0.70
		0.195	10/10	-0.3/0.1	1125/1573	0.71
(CH ₂) ₃ CH ₃		200	0/10	toxic		
(0-11)	CH	100	0/10	toxic		
	i s	50	0/10	toxic		
		25	1/10	-6.7/0.6	toxic	
0	N-L-N	25	3/10	-2.9/-1.3	0/1045	toxic
0	1	25	10/10	-2.7/-1.3	30/1045	0.02
		12.5	7/10	-4.2/-1.3	36/1045	0.03
		6.25	7/10	-1.8/-1.3	36/1045	0.03
		3	9/10	-2.1/-0.2	72/848	0.08
		1.5	9/10	-0.6/-0.2	433/848	0.51
		0.75	10/10	-2.0/-0.2	255/848	0.30
		0.375	9/10	-0.1/-0.2	756/848	0.89
CH ₂ CH(CH ₃) ₂	(CH ₂) ₂ CH ₃	400	0/10	toxic		
		200	0/10	toxic		
		100	7/10	-3.3/-1.0	0/960	0.00
		50	9/10	-3.0/-1.0	17/960	0.01
		50	8/10	-2.6/-0.6	13/1100	0.01
		25	10/10	-2.1/-0.6	45/1100	0.04
		12.5	9/10	-1.2/-0.6	283/1100	0.25
		6.25	9/10	-1.3/-0.6	350/1100	0.31
(CH ₂) ₃ CH ₃	CH2C6H4F-p	200	3/10	-3.7/-0.2	0/1256	toxic
		100	9/10	-3.8/-0.2	0/1256	0.00
		50	10/10	-2.9/-0.2	30/1256	0.02
		25	10/10	-2.0/-0.2	130/1256	0.10
		25	10/10	-2.0/-1.1	145/980	0.14
		12.5	10/10	-2.4/-1.1	220/980	0.22
			10,10			

		Dose	Sur-	Wt. change (test/	Tumor wt. (test/	
R	R	(nig./kg.)	vivors	control)	control)	T/C
		6.25	10/10	-2.0/-1.1	470/980	0.47
		3.1	10/10	-1.6/-1.1	585/980	0.39
	N	250	1/10	-1.2/1.9	toxic	
(CH ₂) ₂ CH ₃	CH2	125	4/10	-1.9/1.9	0/1102	toxic
		62.5	7/10	-2.8/1.9	0/1102	0.00
		31.25	9/10	-0.6/1.9	6/1102	0.00
		31.25	7/10	-0.7/1.7	0/683	0.00
		15.5	7/10	0.3/1.7	7/683	0.01
		7.25	7/10	-0.7/1.7	29/683	0.04
		3.6	97 10	0.7/1.7	8 3/ 68 3	0.12
		250	2/10	-2.8/1.9	0/1102	toxic
	N.	125	8/10	-2.7/1.9	0/1102	0.00
(CH ₂) ₃ CH ₃	CH2-	62.5	7/10	-2.5/1.9	0/1102	0.00
	\checkmark	31.25	8/10	-0.9/1.9	6/1102	0.00
		31.25	3/10	-0.7/1.7	17/683	toxic
		15.5	8/10	-2.0/1.7	6/6 8 3	0.00
		7.25	8/10	-1.2/1.7	19/683	0.02
		3.6	7/10	0.3/1.7	43/683	0.96
H ₂ H ₂		225	0/10	taxie		
н		75	5/10	-5.5/-0.2	0/412	toxic
K	н	50	9/10	-2.6/-0.7	0/645	0.00
\ <u></u>		25	9/10	-4.3/-0.2	0/412	0.00
\dot{H}_2 \dot{H}_2		25	10/10	-5.0/-0.7	0/645	0.00
		12.5	8/10	-3.3/-0.7	0/645	0.00
		6.2	10/10	-2.1/-0.7	57/645	0.08
		3.1	9/10	-1.4/-0.7	244/645	0.37
H_2 H_2		150	9/10	-4.2/1.7	8/1577	0.00
H	CH2-N	7 5	10/10	-3.3/1.7	10/1577	0.00
K	C112	37.5	10/10	-1.7/1.7	45/1577	0.02
		37.5	10/10	-2.2/1.5	20/1004	0.01
H, H,		18.7	9/10	-0.6/1.5	19/1004	0.01
		9.3 9.3	10/10 10/10	-0.4/1.5 0.4/2.3	$\frac{140}{1004}$ $\frac{369}{1661}$	$0.13 \\ 0.22$
		9.3 4.6	10/10	0.4/2.3 0.6/2.3	$\frac{369}{1661}$ 1244/1661	0.22
		2.3	9/10	1.7/2.3	1244/1001 1605/1661	0.96
		1.1	10/10	0.8/2.3	1317/1661	0.79
		* • *	10/10	0.0/2.0		0.10

TABLE XI (continued)

poured into 300 ml. of ice water and allowed to chill overnight. The precipitate was filtered, washed with water, and dried to give the crude product.

Method B.—A mixture of 20 g. of 2-amino-4-chloro-6-hydroxypyrimidine,⁷ 3 molar equivalents of the appropriate amine (Table I), and 50 ml. of 2-ethoxy-ethanol was refluxed for 1 hr., except for cyclopentylamine, where 16 hr. was required for complete replacement. The hot solution was then poured into 300 ml. of ice water and allowed to chill overnight. The precipitate was filtered, washed with water, and dried to yield the crude product.

2-Amino-5-formamido-6-hydroxy-4-substituted Aminopyrimidines (VII) (Table II) Method A.—2-Amino-4-chloro-6-hydroxypyrimidine⁷ (50 g.) was treated with the appropriate amine (see Table II) exactly as described in Method A for the preparation of the desired 2-amino-6-hydroxy-4-substituted aminopyrimidine (VI) except that the hot, reacted solution of 2-ethoxyethanol was poured into 600 ml. of water and then just cooled to room temperature by the addition of chopped ice. Glacial acetic acid (200 ml.) was added and the mixture stirred

R	$\mathbf{R}_{\mathbf{i}}$	Dose, mg./kg.	Sur- vivors	Wt. change (test/ control)	Tumor wt. (test/ control)	T/C
(CH ₂) ₂ CH ₃	н	15	3/6	-2.8/-0.6	325/878	toxic
		11	4/6	-3.3/-0.7	238/621	0.38
		7.5	6/6	-1.5/-0.7	285/1126	0.25
		7.5	6/6	-2.9/-1.6	285/856	0.33
		7.5	6/6	0.0/2.5	861/1100	0.78
		7.5	5/6	-3.9/-0.4	158/663	0.23
		7.5	6/6	-2.1/-0.1	325/651	0.49
		7.5	6/6	-1.8/-1.0	238/812	0.29
		7.5	4/6	-2.9/-0.7	287/621	0.46
		5.0	5/6	-1.7/-0.7	228/621	0.36
		3.3	4/6	-0.7/-0.7	393/621	0.63
(CH ₂) ₃ CH ₃	CH3	18.75	6/6	-0.9/1.9	317/610	0.51
	N	12.5	4/6	-0.2/-0.6	363/1276	0.28
		12.5	6 /6	-0.2/1.9	408/610	0.66
	$O_2 N - N$	8.3	6/6	1.2/1.9	325/610	0.53
	- • •	5.5	6/6	1.8/1.9	583/610	0.95

manually as 40 g. of sodium nitrate, dissolved in 200 ml. of water, was added rather rapidly. The temperature of the mixture rose very slightly. The mixture was allowed to stand 2 hr. with occasional stirring, and the red-orange nitroso derivative was filtered and washed with water. It then was placed in 300 ml. of formamide and 100 ml. of 90% formic acid at 70° and was completely reduced by the addition of sodium hydrosulfite with stirring. The mixture was allowed to boil 15-20 min., 500-800 ml. of hot water and a generous portion of Norit was added, and boiling was continued for another 15-20 min. The boiling mixture was then filtered and the filtrate allowed to cool. The precipitate was filtered, washed with water, and dried at 50-60° to give the desired product.

Method B.—2-Amino-4-chloro-6-hydroxypyrimidine⁷ (50 g.) was treated with the appropriate amine (see Table II) exactly as described in Method B for the preparation of VI. The reacted solution of 2-ethoxyethanol was poured into 600 ml. of water and then just cooled to room temperature by the addition of chopped ice. The nitrosation, reduction, and formylation was then carried out in a manner identical with that employed in Method A above.

9-Substituted Guanines (VIII) (Table III).—The appropriate 2-amino-5formamido-6-hydroxy-4-substituted aminopyrimidine (VII) (25 g.) was covered with 100 ml. of formamide and 8 ml. of 90% formic acid and refluxed for 3-4 hr. The hot mixture was poured into 400 ml. of ice water, with stirring, and allowed to stand a few min. The precipitate was filtered, washed with water, dissolved in 400 ml. of dil. boiling hydrochloric acid solution, treated with Norit, and filtered. The filtrate was made basic by addition of 28% ammonium hydroxide, and the precipitate that formed was filtered after standing a few min., dissolved in 400 ml. of dilute boiling potassium hydroxide solution, treated with Norit, filtered, and the filtrate acidified with glacial acetic acid. The white crystals that formed were filtered hot and washed first with water and then with acetone. Upon drying at 100° an analytical product was obtained. 2-Amino-9-substituted-6-purinethiols (IX) (Table VI): Method A.—A mixture of 50 g. of the appropriate 9-substituted guanine analog (VIII), 150 g. of phosphorus pentasulfide and 650 ml. of pyridine was stirred and refluxed for 12 hr. and then allowed to cool to approximately $50-60^{\circ}$. The precipitate was filtered and washed with acetone. The crude material was dissolved in 1000 ml. of boiling, dilute potassium hydroxide solution with Norit added. After filtration, the filtrate was acidified with glacial acetic acid, and the precipitate that formed was filtered and washed with water. One more reprecipitation gave a near-white product which was washed with acetone and dried at 100° .

Method B.—The appropriate 9-substituted guanine (VIII) (30 g.) and 90 g. of phosphorus pentasulfide in 1500 ml. of pyridine were refluxed and stirred for 100 hr. (adding 20 g. of fresh phosphorus pentasulfide at the end of 50 and 80 hr.). The precipitate was filtered after the solution had cooled to $40-50^{\circ}$ and was washed with acetone. The crude material was dissolved in 1000 ml. of boiling, dilute potassium hydroxide solution, treated with Norite, filtered, and the filtrate acidified with glacial acetic acid (pH 5-6). The precipitate was filtered and washed with water and then dissolved in 300 ml. of boiling, 1:6 hydrochloric acid, treated with Norit, filtered, and allowed to cool after the addition of 150 ml. of concd. hydrochloric acid. The erystals that formed were filtered and dissolved in 300 ml. of boiling dil. potassium hydroxide solution, the solution treated with Norit, filtered, and the filtrate adjusted to pH 5-6 with glacial acetic acid. The mixture was allowed to stand a few min., and the precipitate was filtered, washed with water and then acetone, and dried at 100°.

Method C.—The appropriate 9-substituted guanine (VIII) (20 g.) and 60 g. of phosphorus pentasulfide in 200 ml. of pyridine were stirred and refluxed for 7 hr. The dark solution was reduced to a partially gummy residue *in vacuo* on a steam-bath. The residue was covered with 300 nl. of water, heated on the steam-bath for 4 hr., and allowed to cool. The precipitate was filtered, washed with water, dissolved in 400 ml. of dil. cold potassium hydroxide, treated with Norit, and filtered. The filtrate was heated to boiling, again treated with Norit, and filtered. The filtrate was acidified with glacial acetic acid and the precipitate filtered hot and washed with water. One more reprecipitation gave the desired product.

2-Amino-9-ethyl-6-purinethiol (Table IV).—Twenty grams of 9-ethylguanine² and 60 g. of phosphorus pentasulfide in 500 ml. of pyridine were refluxed for 8 hr. The method of isolation was then carried out in a manner identical to that employed in Method C (above) for the preparation of IX.

6-Alkylthio-2-amino-9-substituted Purines (X) from the Appropriate 2-Amino-9-substituted 6-Purinethiols (IX) (Table V): Method A.—The appropriate 2amino-9-substituted 6-purinethiol (IX) (5 g.) was dissolved in 50 ml. of water containing 4 g. of potassium hydroxide. One molar equivalent of the alkyl halide (shown in Table V), along with 10 ml. of dioxane, was then added to the stirred mixture. The mixture was heated at 45-55° for 3-4 hr. and allowed to cool. The precipitate was filtered, washed with water, air-dried, then finely pulverized, triturated with 70 ml. of petroleum ether (30-60°), and filtered. The crystals were dried at 50°.

Method B.—To a solution of 5 g. of the appropriate 9-alkyl-2-amino-6-purinethiols (IX) in 50 ml. of water containing 4 g. of potassium hydroxide, one molar equivalent of chloroacetic acid was added. The mixture was stirred at $45-55^{\circ}$ for 3-4 hr., adjusted to pH 6 with glacial acetic acid, allowed to cool, and the precipitate was filtered, washed with water, and dried at 80° to yield a white product.

Method C.—The 2-amino-9-substituted 6-purinethiol (10 g.) (IX) was placed in 100 ml. of 14% aqueous ammonia. One molar equivalent of dimethyl sulfate was added. The mixture was stirred at room temperature for 3 hr. and allowed to chill overnight. The precipitate was filtered, washed with a small amount of cold water, and allowed to air dry to yield the crude product.

9-Alkyl-2-amino-6-methylthiopyrimidine (IV) from the Appropriate 4-Alkylamino-**2,5-diamino-6-methylthiopyrimidine** (IV) (Table Va).—The appropriate 4-alkylamino-2,5-diamino-6-methylthiopyrimidine (IV) (25 g.) and 250 ml. of a 1:1 mixture of ethyl orthoformate and acetic anhydride were refluxed for 2 hr. and then reduced to dryness *in vacuo* on a steam-bath. To the residue was added 150 ml. of water and then a saturated solution of potassium hydroxide until a precipitate began to form. The mixture was boiled 5 min. and cooled. The precipitate was filtered, dissolved in 150 ml. of boiling water, treated with Norit, and filtered. The filtrate was allowed to cool, and the precipitate that formed was filtered and dried at 60° to give the crude product.

4-Alkylamino-2-amino-6-chloropyrimidines (I) (Table VI).—Fifty grams of 2-amino-4,6-dichloropyrimidine⁵ was placed in 300 ml. of absolute ethanol. Two molar equivalents of the primary amine (where 4-methylamino and 4-ethylamino derivatives were required, aqueous solutions of 40% methylamine in water and 70% ethylamine in water were used) was added. This mixture was refluxed for 1 hr., evaporated to dryness *in vacuo* on a steam-bath, and the crystalline residue was swirled in 300 ml. of water and filtered. Upon drying at 80° the desired product was obtained.

4-Alkylamino-2-amino-6-pyrimidinethiols (II) (Table VII): **Method A.**— Eighty grams of the appropriate 4-alkylamino-2-amino-6-chloropyrimidine (I) was added to a stirring mixture of 300 g. of sodium hydrosulfide in 300 ml. of ethylene glycol at 60° . The reaction temperature was raised to $140-150^{\circ}$ for 30 min., the mixture was diluted with 2000 ml. of water, adjusted to pH 5-6 with glacial acetic acid, and allowed to cool. The crude product was filtered, washed with water, and dried at 80° . It was generally necessary to recrystallize the crude product from water before using it for further synthetic work.

Method B.—The 4-alkylamino-2-amino-6-chloropyrimidine (I) (80 g.) was treated exactly as described in Method A except that the acetic acid mixture was brought to a boil, treated with Norit, and filtered. The filtrate was adjusted to pH 8-9 with ammonium hydroxide and allowed to cool. The precipitate that formed was filtered, washed with water, and dried at 80° to yield a product which generally did not require further purification for additional synthetic work.

4-Alkylamino-6-alkylthio-2-aminopyrimidines (III) (Table VIII): **Method A.**— To a solution of 30 g. of the appropriate 4-alkylamino-2-amino-6-pyrimidinethiol (II) in 300 ml. of water containing 20 g. of potassium hydroxide, was added, dropwise, one molar equivalent of the proper alkyl halide (Table VIII) at 25°. The product precipitated immediately, and the reaction mixture was allowed to stir 1-2 hr. longer. The white precipitate was filtered, washed with water, and airdried to yield the required product.

Method B.—To 20 g. of the appropriate 4-alkylamino-2-amino-6-pyrimidinethiol (II) and 20 g. of anhydrous potassium carbonate in 140 ml. of N,N-dimethylformamide, was added one molar equivalent of benzyl chloride. The mixture was stirred at 60° for 1 hr., then diluted with 600 ml. of water, and allowed to cool. The precipitate was filtered, washed with water, and dried at 60° to give the benzylated product.

2,5-Diamino-4-methylamino-6-methylthiopyrimidine (IV, R, R' = CH₃).—To a suspension of 20 g. of 2-amino-4-methylamino-6-methylthiopyrimidine (III, R, R' = CH₃) in 250 ml. of water and 80 ml. of glacial acetic acid, 15 g. of sodium nitrite in 50 ml. of water was added dropwise, with stirring, at room temperature and allowed to stir for 1 hr. The purple nitroso derivative was filtered, washed with water, and then suspended in 300 ml. of water at 60–70°. Sodium hydrosulfite was added with stirring until complete decolorization was afforded. A small amount of gunny material was filtered from the solution, and the filtrate then was adjusted to pH 8–9 with 28% animonium hydroxide. Upon cooling, the precipitate was filtered, washed with a small portion of cold water, and dried at 50° to give 15.3 g. of product. All attempts to obtain an analytical sample were to no avail due to the fact that in the drying process a small amount of oxidation produced a slightly pink coloration.

2,5-Diamino-4-ethylamino-6-methylthiopyrimidine (IV, $\mathbf{R} = C_2 \mathbf{H}_s$, $\mathbf{R}' = C \mathbf{H}_3$).— Twenty grams of 2-amino-4-ethylamino-6-methylthiopyrimidine (III, $\mathbf{R} = C_2 \mathbf{H}_s$, $\mathbf{R}' = C \mathbf{H}_s$) was nitrosated and reduced in the same manner as 2-amino-4-methyl-amino-6-methylthiopyrimidine above.

Potential Purine Antagonists. XXXII. The Synthesis and Antitumor Activity of Certain Compounds Related to 4-Aminopyrazolo [3,4-d] pyrimidine^{1,2}

Edward Y. Sutcliffe, K. Y. Zee-Cheng, C. C. Cheng, and Roland K. Robins

Department of Chemistry, Arizona State University, Tempe, Arizona

Received December 2, 1961

A number of new derivatives of 4-aminopyrazolo [3,4-d]pyrimidine (4-APP) have been prepared and examined for antitumor activity against Adenocarcinoma 755. The structure-activity relationships of this group of compounds is discussed. Derivatives of 4-APP with a tetrahydrofuryl or tetrahydropyranyl ring at position 1 were especially active. These compounds can be considered analogs of 4-APP deoxyriboside.

4-Aminopyrazolo [3,4-d] pyrimidine³ has been shown to prolong

⁽¹⁾ This work was supported by research grants CY-4008(C1), (C2), and (C3) from the National Cancer Institute of the National Institutes of Health, Public Health Service.

⁽²⁾ Presented in psrt before the Division of Medicinal Chemistry, 138th Meeting of American Chemical Society, New York, N. Y., Sept. 1960.

⁽³⁾ R. K. Robins, J. Am. Chem. Soc., 78, 784 (1956).